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Calbiochem’ MAPK Family Pathways

Cellular Computation

» No survival without computation!
+ Finding food
- Avoiding predators

INPUT
(E1)

¥
MAPKKK T = MAPKKK®

- How do cells compute?
+ Clearly doing “information processing”

- What are their computational principles? ™ T

- What are their algorithms? MAPK % MAPK:P < MAPI-PP
Computer i T MAPK Pase
Science! ouTRUT




More concretely

- Give substance to the claim that
"cells compute”
- Yes, but what do they compute?

- Catch nature red-handed in the act
of running a computational task

- Something that a computer scientist
would recognize as an algorithm




Reality is Complicatec

- Every biochemical species that we may just call "X
s actually a sophisticated machine that has evolved

for billions of years

Structures of the cyanobacterial
circadian oscillator frozen in a fully
assembled state

Joost Snijder,"* Jan M. Schuller,**} Anika Wiegard,* Philip Lossl,"

Nicolas Schmelling,” Tlka M. Axmann,” Jiirgen M. Plitzko,”
Friedrich Forster,”*§ Albert J. R. Heck'§

Day complexes Night complexes

KaiA stimulates
KaiC Cll
autokinase
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‘Activated SasA D@ KaiB binds

phosphorylates to and
RpaA displaces SasA
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ZNZ >
KaiB

" E% § i KaiA is inactivated;
oldswitch stops Kaic Cll Gl is activated
Transition autokinase to dephosphorylate
stimulation RpaA

Structural basis of the day-night
transition in a bacterial
circadian clock

Roger Tseng,'* Nicolette F. Goularte,”* Archana Chavan,”* Jansen Luu,”
Susan E. Cohen,* Yong-Gang Chang,” Joel Heisler,® Sheng Li,” Alicia K. Michael,”
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Abstract Machines of Biochemistry

Regulation
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Bioinformatics View (Data Structures)
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Systems Biology View (Networks)

Gene Regulatory
Gene

T, Networks
Biochemical Transport
Networks

Networks
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Gene . .....................
Machme Gene Networks
Molecular Interaction
Maps
Transport Networks
Proteln Membrane o

Machme Machlne
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These 3 machines
are Turing powerful!




Network Evolution

Across species: Ortholog genes
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How to model “Influence”

"True” molecular interactions. “Equivalent” influence interactions.

-
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Figure 4: a) Schematic diagram of a primitive cell cycle in the reinitz framework.

Figure 3: a) Schematic diagram of a simplified SIMM model [17]. The activa-

Chemical Reaction Network « > Influence Network
I IS TR T ) LN D ) Instead of modeling basic interactions, such as binding, synthesis, and degra-
E\-(J]\-ng a pf]l’ll]’[ﬂ- € Elll\dT} otic C{H C“ : l{’ ?\I()d{'l dation of molecular components, this framework models interactions simply as
- ] i activation or inhibition. This approach also reduces the number of nodes nec-
Malte Liicken, Jotun Hein, Bela Novak essary In the network, as e.g. the inhibitor binding tightly to the activator to

form a complex, which produces phosphorylated inhibitor to be degraded un-
der catalysis by the activator, is now simply a double negative feedback loop
shown in Figure[I} This type of interaction is the basis of both aforementioned
molecular model, therefore they can both be summarized in a single Reinitz
model.
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The Reinitz Model of Influence

Based on early connectionist (neural (/X\:\ Biochemcal Reacton
: Networks
network) mOdehng Y _. Z John J. Tyson' and Béla Novik?
- Each activation/inhibition interaction is s wao m
modeled as a flexible sigmoid function with e e o

4+ parameters per node amenafone Zons)|. neenlo o)

. . L inhibition
- We prefer to stick to mass action kinetics
- It will later become clear why effect —x-
L o inhibition
- We model activation/inhibition nodes activation i fre
by a mass action motif: R W 5o
. effect — x, 77— X, —= X,—
Using 4 rate parameters per node o o

Akin to multisite modification T l— ——
activation




activation =@

The Triplet Model of Influence hibiion

inhibit x
inhibition
high —x«- low = xishigh XX, — xz—-— X is low
(modiﬁed)"-.,.__I‘.‘.-'; (unmodified)
activation
activate x
Usually modeled by triplet motif

sigmoid (e.g. Hill or
Reinitz) functions

biological mechanism:
(e.g.;) multisite
phosphorylation

We model them by
4 mass action reactions over
3 species X, Xy, X5

They actually implement a
Hill function of coefficient 2:

N\ %0
Nxt
\ 2

r;=0.1
r10=10.0
rp;=0.1
1, =10.0

catalysis -o

For example:

Approximate Majority
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The Triplet Model of Influence mhisition -

koo kize ~  (other

Solving this mass action model at steady state | effect — x,7 X, ——
With tot = x + x; + x,, Obtain x4 as a function of aand i : effect)
_ k10k21t0t az . .
X0 S R oka1a? + korkarai + ko1 ka2 activation
) =
\ x0 §§;

Assuming i = tot — a (inhibition decreases as activation increases) L x1
obtain x, as a function of ae[0..tot] (max stimulus = max response) N\ x2
[
kyoky tot a?
Xn =
° 7 (kiokar — kotkzy + ko1ki2)a? + (koikar — 2koikiz)tot a+ koi ki tot?

|
|

s

By regulating the rates of flow through x4 within 2 orders of
magnitude we can obtain a range of linear, hyperbolic and
sigmoid responses in the range [0.1] to linear activation a[0..1]. , .

steady state transitions ¥
from inhibited to activated . ]
with tot = 1 and a<[0..1] '

o
d




Influence Network Notation

- Catalytic reaction T z z zis the catalyst
y L XLZ»V

X—y — X+Z—2Z+Yy

- Triplet motif

middle state

inhibit x ”"M””i.i”“(E.nsures nonlinearity) |

(promote X5) “"'"“‘* J - Duality
r—)T(" = _'_ X0oe— X| — ij.’_ - _/rNTX_*\_

promote X -——-7[” \ f X, %
(promote X,) f N e - e
Xo X, state where state where (~X)o= Xy,

output output X is promoted x is inhibited (~X)1= Xq,

(~X)2= Xo

influence node catalytic node




Influence Network Duality

- Let ~x be the species such that

(~X)o= %o (*X)= X, (~X),= Xg
so that promoting x is the same as inhibiting ~x etc. Then:

N

f._r__f:'{\ /r'\

XD Xz --...Xz MXO

output output output output
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Network model

nfluence networks

- Influence species: two main molecular states (high/low or modified/unmaodified)
+ High-low transitions are nonlinear (e.g. sigmoidal)
- Transition kinetics may vary (but we fix one uniformly)

GGGGGG

inhibition S
high <= X = low - X G,/M Transition
(modified)“-.,“I"'.-" (unmodified) T
activation r e e
./ l
substrates
. GW
Nodes Ex.: a cell cycle switch model K
ENSA/Arpp19 - Fcpl

- Very much like gene regulatory networks, but with the extra option of

the "unmodified” state being active too o
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A Consensus Problem

- Population Consensus

- Given two populations of x and y "agents”
- We want them to “reach consensus”

+ By converting all agents to x or to y S,DeC[ﬁCC]nOH
depending on which population was in majority initially .
XY = X+Y, 0 if Xo2Y,

- Population Protocols Model XY =0, X+Y if Yo2Xg

- Finite-state identity-free agents (molecules) interact in
randomly chosen pairs (= stochastic symmetry breaking)

- Each interaction (collision) can result in state changes
- Complete connectivity, no centralized control (well-mixed solution)

21




A Consensus Algorithm
- Approximate Majority (AM) Algorithm

- Uses a third "undecided” population b
- Disagreements cause agents to become undecided
- Undecided agents agree with any non-undecided agent

10000

10000+

8000

8000
Nox ]
6000 5000~

4000 4000

2000 2000

0 LI | I|IIII 0 T 1T

0.002 0.00 0 0.001 0.002 0.00:

Dana Angluin - James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust
Approximate Majority

catalysis -0
chemical
reaction
network

activation -
inhibition =4

_X.--

AM
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Consensus Algorithms

Direct Competition Approximate Majority
! | l | X5 + Xg = Xo + Xq
X Xty—=y+y ° > Xy + Xg = Xo + Xg
— Yy +X— X+ X XOfo X« X3 Xo + X5 = X5 + X4
Bl i T ol
DC AM

Ba d O (n) Dana Angluin - James Aspnes - David Eisenstat G OOd O (| Og n)

A Simple Population Protocol for Fast Robust

o e Approximate Majority
X:y — 1.20+06 /
80 XO_X2 —0c /
B T | 1111 A I o . _
“ - ) Worse-case scenario example,
. starting with x,=x,, X;=0:
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A Biological Implementation

Approximate Majority (AM)

T :
1) Bistable
Even when initially x=y (stochastically)

2) Fast (asymptotically optimal)
O(log n) convergence time

3) Robust to perturbation
above a threshold, initial majority wins whp

Dana Angluin - James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust
Approximate Majority 2007

Epigenetic Switch

(HMT) (HDAC)

M U AQ
y Sl Bul |
e i
(Hom)'— &5~ — — 'k&}, 4
(HAT)\_ &

Silenced o -

1 oo 1

Active .I, —7_\?\\‘ / lT ( % |
1333333333871

Figure 1. Basic Ingredients of the Model

Theoretical Analysis of Epigenetic
Cell Memory by Nucleosome Modification

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

mmmmmmmmmmmmmmmmm

2007
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Not always that simple

- The epigenetic switch seems a direct biological I
implementation of an algorithm P Q*T@i

- Although we may have to qualify that with some notion of
approximation of the (enzymatic) kinetics

- In most cases the biological implementation seems
more indirect or obfuscated
- "Nature (s subtle but not malicious - Einstein” Hal think again! 752
- Other implementations of Approximate Majority seem more
convoluted and approximate

25




Microsoft”
Research

Antagonistic Networks




Antagonistic Networks

- Let's generalize:

- AM is based on antagonism between two species (inside the triplet)
+ So (essentially) are many standard biological networks

- Are they somehow related?

- We could try the same empirical analysis as for CC/AM
+ But we can do better

27




Mutual Inhibition (1 vs. 1)

- "All" cellular switches in all phases of the cell cycle follow (abstractly) a

mutual inhibition pattern:

Molecular mechanisms creating bistable switches at cell cycle

transitions

Anael Verdugo, P. K. Vinod, John J. Tyson and Bela Novak
Open Biol. 2013 3, 120179, published 13 March 2013

- Also found in other areas
(cell polarity establishment):

PHILOSOPHICAL
TRANSACTIONS
——OF

THE ROYAL Dj
SOCIETY J

rsth.royalsocietypublishing.org

The PAR network: redundancy and
robustness in a symmetry-breaking
system

Fumio Motegi'%* and Geraldine Seydoux*

signal

™~

activator

|
C-=-D

aPAR fex edb kloop mutual exclusi PPAR feedback looy
CDC-42 > myosi see box ll PAR-2 xclmuummwm
endocytosis resistance agai

\
/'

—< o

o N —

/1

]

X

L.




Septation Initiation (1 vs. 1)

- Other (inherently different) biological networks are based on mutual inhibition,
and share characteristics with AM

——————— | I— ——— -

1 |

1 ¢ |

I Byrd,. > BYyrd g Byrdq I

| S AN 1

| ~ 9 7z \f\ |

| [ N |

1 SINNEW < SINC ‘(_'_’ SINO[G 1

| | |

| I I |

| I I |

Y

Cdc11 =2 Cdc11-P Cdc11-P €5 Cdcll
OPEN aACCESS Freely available online @PLOS | g%ﬂ;\é‘:’AYIONAL

Dynamics of SIN Asymmetry Establishment

Archana Bajpai', Anna Feoktistova®, Jun-Song Chen® Dannel McCollum? Masamitsu Sato™®,
Rafael E. Carazo-Salas®, Kathleen L. Gould?, Attila Csikdsz-Nagy'7-®*

SIN inhibiting Byr4,
absence of SIN promoting Byr4
Byr4 inhibiting SIN,
absence of Byr4 promoting SIN
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Delta-Notch (2 vs. 2)

- A mutual inhibition pattern

- Involving two species in each cell

low Delta
=>

ﬂ tWO Ce”S a,b low Notch

- DN, antagonize D,,N,

Lateral Inhibition through Delta-Notch
Signaling: A Piecewise Affine Hybrid Model*

Ronojoy Ghosh and Claire J. Tomlin

M.D. Di Benedetto, A. Sangiovanni-Vincentelli (Eds.): HSCC 2001, LNCS 2034, pp. 232-B46] 2001.
[® Springer-Verlag Berlin Heidelberg 2001

low Notch
=>
high Delta

high Notch
=>
low Delta

high Delta
=>
high Notch

30




activation

Antagonistic Networks hibiion

1vs. ] Tvs. 1
Mutual Inhibition & Mutual Inhibition &
Self Activation Mutual Anti-activation

Ep
[

Cell cycle transitions Septation Initiation

ble switches at cell cycle

lé

) ] X.N‘L\ hd — A€ = How
Polarity establishment s -
LS <
s ® ‘s
PHILOSOPHICAL The PAR network: redundancy and 4 L & by
TRANSACTIONS N Y Ll
or ™ robustness in a symmetry-breaking 1 ! Mew Y(_ > Y:jlu
THE ROYAL | =5 system
SOCIETY J 4

-~ /A

Gene networks ynamics of SN Asymmety Estabishment

Construction of a genetic toggle switch in
Escherichia coli i I

. T
Timothy S. Gardner2, Charles R. Cantor? & James J. Collins*2 vt 3 1




ntagonistic Networks

Tvs. 2

I CCr

The G,/M cell cycle switch

Numerical analysis of a comprehensive model of M-phase control in
Xenopus oocyte extracts and intact embrvos

B

“.*

Universal control mechanism regulating onset of M-phase

oS08 0% A 1990 d 10 638

2 VS, 2

> low Notch

low Delta

low Notch => high Delta

Y |

|—Z

e13Q ybiy

=
-y

Y210N ybiy <

low Delta <= high Notch

Delta-Notch

Patterning embryos with oscillations: structure, function and
dynamics of the vertebrate segmentation clock

Andrew C_ Oates', Luls G. Morel'2 and Sadl Ares’a+

Lateral Inhibition through Delta-Notch
Signaling: A Piecewise Affine Hybrid Model*

activation
inhibition

3vs. 3

The "new” cell cycle switch

Phosphorylation network dynamics in the control of
cell cycle transitions

Weel & Weel ||

\_'j \‘Cdmé

Cdc268  OdclB

-/

-9
-
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Decisions, decisions...

- The AM algorithm has ideal properties for settling a
population into one of two states

- Seems like this would be useful in Biology
- Can we find biological implementations of this algorithm?
- Could it be related to the cell cycle switch?

34




ne Cell Cyc e Switch oot ot e o

Paul Nurse

'his basic network is universal in Eukaryotes [P Nurse]

- The switching function and the basic network is the same from yeast to us.
- In particular detail, in frog eggs, G,/M transition:

Double positive feedback on x G, PHASE =phacs- - Aaphcn trni
Double negative feedback on x
No feedback ony. Why ?7? :
Hybrid

|
Numerical analysis of a comprehensive model of M-phase control in SySte m
Xenopus oocyte extracts and intact embryos S PHASE

Gi PHASE

Bela Novak* and John J. Tysont
I irginia Polytechnic Institute and State University, Blacksburg, Virginia 24060-0406, USA

*Permanent address: Department of Agricultural Chemical Technology, Technical University of Budapest, 1621 Budapest Gellert Ter 4, Hungary
ooooooooooooooooooooooo

Start transition

- The function is very well-studied. But why this network structure?
- That is, why this peculiar algorithm?

35




How to Build a Good Switch
- What is a "‘good” switch?

- We need first a bistable system: one that has two distinct and stable states.
l.e., given any initial state the system must settle into one of two states

- The settling must be fast (not get stuck in the middle for too long)
and robust (must not spontaneously switch back)

- Finally, we need to be able to flip the switch by external inputs

"Population protocol” switches

- Identical agents (‘molecules’) in a population start in some state, say x or y

- A pair of agents is chosen randomly at each step,
they interact (‘collide’) and change state

+ The whole population must eventually agree on a
majority value (all-x or all-y) with probability 1

36




A Bad Algorithm cotalyss o

+ Direct Competition

- X catalyzes the transformation of y into x
-y catalyzes the transformation of x into y
- when all-x or all-y, it stops

- This system has two end states, but

- Convergence to an end state is slow (a random walk)

- Any perturbation of an end state can start a random
walk to the other end state (hence not really bistable)

Yy + X — X+ X
X+ty—=Yy+y

111111
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A Good Algorithm

activation -e catalysis o
inhibition =

- Approximate Majority (AM
op jority (AM) L] Lob ]

- Third, undecided, state b X —b— Y
- Disagreements cause agents to become undecided T r T T
- Undecided agents believe any non-undecided agent AM
. . ol + +
- With high probability, for n agents Xxty=y E
- The total number of interactions before converging is O(n log n) y+txXx—=Xx+
= fast (optimal) D+ X—>X+X
- The final outcome is correct if the initial disparity is w(sgrt(n) log n) b + y—o>y+y
= solution states are robust to perturbations
- Logarithmic time bound in parallel time - '
- Parallel time is the number of steps divided by the number of agents e \S/l/;rr;;‘casithsi‘inagzo_
- In parallel time the algorithm converges with high probability in O(log n) X=Y == 9/ ye
.I:I];\Silll:lllu)"lé ;lopu;:\tlon““Pl:):;:ol for Fast Robust 40: \\\

Approximate Majority
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An “Ugly” Algorithm: Cell Cycle Switch

activation -
S o
l inhibition =4
yi

Nobel-prize T __I_

winning network — X

Obfuscation of a )
distributed T i
algorithm?

M PHASE

Metaphase-to- Anaphase transition

Gy PHASE

- Is it a good algorithm? Is it bad?
- |s it optimal or suboptimal?

S PHASE

Gi PHASE
Numerical analysis of a comprehensive model of M-phase control in

Xenopus oocyte extracts and intact embryos Start transition

Bela Novak* and John J. Tysont
Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060-0406, USA
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Convergence Analysis - CONSENSUS

- Switches as computational systems (s b s ahy wien

| |
[ o O
=y
|_T |__1 f_T i_T
t i cCcC

—t— 0.00355 0 0.00710 0 0.00710

. 15000 15
Start symmetrical roxlt,
(Xo=X{=X, etc.) -

Black lines: several stochastlc simulation traces
Color: full probability distribution of small-size system
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Steady State Analysis - SWITCH

+ Switches as dynamical systems

bias 1

ll_l bias

Cx
L 7 K -i-_TSTx
SX SX !

% csx, - 150

Black lines: deterministic ODE bifurcation diagrams
Red lines: noisy stochastic simulations
Color: full probability distribution of small-size system
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In Summary

o LI

T KN
(a "bad” switch) pec AM
“t o 0.00355

C

b ]

‘15000

Stabilization
Speed
N
xs
.

O

15
Pr(x,|t,)
I 00001
I 0001
- y
01
1

activation -e
inhibition =4
catalysis -0

time

150
Steady State
Stimulus-
Response 1

«— sxp—>

0 e 150 stimulus 0

B
¥ )T
l
0
5

s 15
Pr(x,|sx,)
. 10°
| | 10*

- 10°
001

0.1
I

The "classical” Cell Cycle Switch CC
approximates AM performance

SCIENTIFIC 0> W
REPLIRTS 5 tnnS(

The Cell Cycle Switch Computes
Approximate Majority

SUBJECT AREAS:
o Luca Cordell” & Atila Csikdsz:Nagy®

COMPUTATIONAL
BOLOGY

CC converges in O(log n) time (like AM)
(but 2x slower than AM, and does not fully switch)

Symmetrical initial conditions (xy=x;=X,)

Black lines: high-count stochastic simulation traces
Color: full probability distribution of low-count system

Hor axis is time.

AM shows hysteresis (like CC)

Black lines: deterministic ODE bifurcation diagrams
Red lines: medium-count stochastic simulations
Color: full probability distribution of low-count system

Hor axis is stimulus pushing towards X, against fixed bias.

But there is a deficiency
in CC performance!
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Why is CC worse than AM?

- The classical CC has an algorithmic “bug

- It works ok but never as well as AM
- Because s continuously inhibits x through z, so that x cannot fully express

1

S
| =
I__l =

X -
r _T T | - = : -
I cc F 0 «t- 002

0 <t 20 ° The corresponding cell cycle
/ : oscillator is also depressed
- So let’s fix the bug!

- Easy: let x inhibit s and t “in retaliation”
- Q: Why didn't nature fix it?
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Nature fixed it!

- o

‘here is another known feedback loop

+ By which x suppresses s “in retaliation” via the so-called Greatwall loop
- Also, s and t happen to be the same molecule (=s)

Biological network
; _l 150000 —t,> 00025 / -
9
Pr(x,|t,)
Z _-I — weel
[ X
-[ /\ T R - (Gwl) l
S l X %, - PP2A ===— cdk/cyc
1 1
T— r —T By cdc25 —T
_T GW OO “t,- 10 © \ T
Full activation!

s and x now are antagonists: they are the two halves of the switch,
mutually inhibiting each other (through intermediaries).
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More surprisingly

- The fix makes it faster too!

- The extra feedback also speeds up the decision time of the switch,

making it about as good as the ‘optimal’ AM switch:

Conclusion:
Nature is trying as hard as it can to
implement an AM-class algorithm!

The “classical” cell cycle switch is only
half of the picture: the extra feedback
completes it algorithmically.

15000

<_m>< -

AM
GW
CcC

T
<t

—
0.004
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The Greatwall Loop

Our paper appeared, suggesting GW is + Another paper appeared that
a better cell cycle switch than CC: same week:

GW = AM "obfuscated”

Showing experimentally
that the Greatwall loop is a
necessary component of

switch reset r Weel
. g .
AT ! g i 53 TThheeSr\wl\gifg.s—good—as-AM
new feedback T(Hvl/ c;dc25—T network has been ‘refuted’
GW
SCIENTIFIC Q2 o s
R E P ?RT S np _“ COMMUNICATIONS

Received 6 Jul 2012 | A d 14 Aug 2012 | Published 1l Sep 2012

The Ce”_ Cycle SV‘./IfC.h Computes Greatwall kinase and cyclin B-Cdk1 are both critical
Approximate Majority constituents of M-phase-promoting factor

SUBJECT AREAS:
comrmmony e Cardelll & At GikdszNagy® S e p 2 01 2 MasatoshiHara™, Yusuke Abe, Toshiaki Tanska?, Takayoshi Yamamoto, Eiichi Okumura! & Takeo Kishimoto! S e p 2 01 2

BIOLOGY
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The basic “revised” Cell Cycle Switch

: i
wee
PP2A I-(EXVI) I }cyc E)T(}
cdc25 —T r cer

T This is an AM-class algorithm
(identical performance)
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New Cell Cycle Switch Network

- A recent paper presents a more complete view of the cell cycle switch
N.B. “phosphorylation network dynamics” here is the same as our x5-x,-%, motif

Phosphorylation network dynamics in the control of . e
cell cycle transitions Mutual inhibition between
T e ke three Spec]es each

.’ ea’:\ﬂi lﬁﬁﬁﬁ?&fca?ar:fs?‘l;a E:IVEB FF?DUC; rd, South Parks Road, Oxford OX1 3QU, UK

B - PP1 /-1 Wee1

--._**

F'F"‘If;-}lm;(: E'EQDE w{;—}wu / '|'
k’ft PR \“j P  PP2A S X cdk1

ST - T_ [ 43

,—Cdkk.;' Y GWLI / —'l'Cdc25

Weel® Weel | i GdoZE® Cdods
NCC

U e’ L\
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Molecular Implementation of AM

- We produced a chemical implementation of AM using DNA gates
- e, a 'synthetic reimplementation’ of the central cell-cycle switch.

a b

e X —p —p
nature G Majority Network (Majority) —» — Majority : : %
n i, X+Y—%528+PB Y — | =5 (Majority)
a Ot C 0 Ogy . e k (Minority) —* e T
Il e & ii. B+X — 2X+PX .

k s
lii. B+Y — 2Y+PY - .
i. LL i. B, L ii.B Y
. . . - K=XotPX-PB A —
nature.com » journal home » archive » issue » article » abstract Y=Y +PY-PB E PB B X PX X : Y PY Y
B=2PB-PX-PY B e
ARTICLE PREVIEW
view full access options » (v
X;=0.9, ¥=0.1 Xo=0.8, ¥,=02 Xp=0.7, Yo=03 Xo=0.6, Yo=0.4
= == A L ~ 1
NATURE NANOTECHNOLOGY | ARTICLE go7s gors 20-75\/ &%
< e 3 05 5 05 = 05" 3 08\ e
E = o 8 B o g
Sozs _So2s 2oz . Zo2s
P bl h el o > v© o 80 ofh———==§° o i
rogrammaple chemica controllers R O ety O e g R
m ade from D N A X%m01,%108 X=02, ;=08 X=0.3, Yo=0.7 Xo=0.4, Yo=06
1 1
_ 1" = 1 Y — ¥ 1
Zors _:;0.75\,/””:5 29-75\// Zors i
Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, 300_‘;: 300‘; goué: : 5 0‘5{
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Network Equivalences




What we learned

+ The network structure of AM implements an input-driven switching function
(in addition to the known majority function).

+ The network structure of CC/GW implements a input-less majority function
(in addition to the known switching function).

- The behavior of AM and CC/GW in isolation are related.
- The behavior of AM and CC/GW in oscillator contexts are related.

- A refinement (GW) of the core CC network, known to occur in nature,
improves its switching performance and brings it in line with AM performance.
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Can we make this precise?

- Our evidence for computational content of biochemical networks is
so far

- Quantitative, covering both kinetic and steady state behavior of what networks do
- But empirical (based on simulations/numerical solutions)

- And it does not yet explain how the CC/GW network relates to the AM network,
that is, how each piece of CC/GW corresponds to each piece of AM

: Analyﬂcal evidence is harder to obtain

The proofs of the computational properties (optimality etc.) for the AM algorithm are hard and do not
generalize easily to more complex networks

- Quantitative theories of behavioral equivalence and behavioral approximation, e.g. in process algebra, are
still lacking (although rich qualitative theories exist)

- How exactly is CC (or CCr, GW, etc) the “same” as AM?
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Network Emulation CCr emulates AM

- For any rates and initial conditions of AM, we can find some rates and initial
conditions of CCr such that the (9) trajectories of CCr retrace those (3) of AM:

: 1
! = X
! ~S, I X * \
r cCr (3 species)
AM
f = / N initialize:
q N\ x2
K x Z=X
E ~y =X
DSE (Y2= %o
E Yi=X%
AT AR SAAAT A S Yo = %)
(9 species on 3 trajectories) (3 species on 3 trajectories)

- How do we find these matching parameters? By a network morphism!




Network Emulation: Ml emulates AM

A mapping of species and reactions

] & 1L|

| ; I:X0¢ . X e— X3

AM

any initial conditions

homomorphic mapping

Z->X
~y -> X

f; [ 1

f N initial conditions:
] Nz2
] N o
o 2,=Y, =X,
1— . Zl = yl = Xl
\ e T

less trivial than you might think:
it need not preserve the out-degree of a node!
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Network Emulation: S emulates AM

A mappmg of speoes and reactions _ Q:i’
l_l_—l ] N any initial conditions

homomorphic mapping

initial conditions:

: 2
-y o] - Zp=Y2=Xp
‘ LZ . Z;1=Y15%

Z;=Yo =X,

Z->X
~y -> X

Si ZO‘ VZ]A _=22_
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How to find emulations

- How do we check a potential mapping for all possible

initial conditions of the target?

+ Statically! Check conditions on the joint stoichiometric matrices of the two
networks under the mapping.

- How do we check a potential emulation morphism for all

possible rates of the target?

- Can't; but if one emulation is found, then the rates of the target network

can be changed arbitrarily and a related emulation will again exist.
Wt blomecentr o TS 0509/384 @ 7

RESEARCH ARTICLE Open Access

Morphisms of reaction networks that couple

structure to function
aaaaaaaaaaa ' 58




Applications of Emulation

Models from the BioNetGen database

- Model Reduction

Original model

Forward reduction

Backward rraducie'on
ST

l ik -
. Id |R| :‘ [S| % Red.(s) |R| |S| Speed-up Red.(s) |R| = |S| Speed-up
’ Flnd reduced networks M1 35380447 262146 & 4.61E+4 990 222 T65E+4 2708 222 I
. M2 786432: 65338 = 1.92E43 720 167 368E+3 10501 167 &
. COmpute quotleﬂt CRNS M3 1720327 16386 : 8.15E+1 504 122 1.16E43 177E+2  1348: 122 5.34E+42
M4 48: 18 = 1ODE-3 24 12 1.00E+0  2.00E-3 457 12 LOOE+0
i d k ; M5 1940547 14531 @ 3.72E+1 142165 10855 1.03E+0 1.32E+3  93033% 6634 1.03E+0
) Fln networ Symmet”es M6  187468: 10734 = 3.07E+1 57508 3744 1.92E+1 271E+2 1444737 5575 B.53E+0
h b -[Z b | ' | ' M7 32776= 2506 % L26E+0 16481 1281 G.23E+0 16GE+1  32776% 2506 x
that may €0 10 Og|Ca Interest M8 112337 2562 = L12E+0 33075 1897 1L12E+0 1.89E+1 412333 2562 § <x
M9 50332 471 § 191E-1 4068 345 LO4E+0  4.35E-1  5033% 471 = x
: : M10 57973 796 i 161E-1 4210 503 147E+0 T7.87E-1  5797: T96 I x
o Or |S| I | e ne ratl O n Mi1 58325 730 & 389E-1 1296 217 132841  GODE-1 24347 217 W55E+0
M12 487 85 1 2.00E-3 264 56 1.88E+0  6.00E-3 4265 56 N31E+0
. . M13 243 18 3 120E-2 24 13 x 7.00E-3 1,3 MLO0E+0
+ Find morphisms between networks e
(e.g. all the ones for a fixed rate assignment) Aggregation Emulation
reduction reduction
Forward and Backward Bisimulations for Chemical Satisfiability Modulo Differential Equivalence Relations Comparing Chemical Reaction Networks:
Reaction Networks ! o ) A Categorical and Algorithmic Perspective
i, Mirco Tribastone?, Max Tschaikowski’, and - Rcwa:(‘:::ﬂi“ﬂ'f::j"“ - Mirco T"b“:fr'l‘jm V“::gi:“h“k‘)w’k‘
n m Mirco Tribastone "l'schm}\ov\ ski
: & niversity of Oxford, UK l\|Tlmnmw!:l,1\[:hsﬂ udies Lucca, Italy

es Luc
{name.surname}@imtluccat

LICS 2016

pton, UK

Concur 2015

POPL 2016
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Walks in Network Space

p i

H ®

Se Z-
L T
1l |
..y_ -e |
-
DN

&5

- Y-

e N —

NCC
r

[5].
thyis

p

(

stoi

homomorphism and
iomorphism (transitive))

:

v — X

1




Walks in Network Space

@
Fy A iy
LT e Py

Yy - " r S, >y T_
" Dela-Hiotsi mratrmn Miaon
—8 5 ’) y 3 Z ” X

i 5
¥— — z,—»» X i r,~»x
!

a Ly e ccr
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Walks in Network Space

p i

Y |

Se Z-
L T
Z,
I | S,
..y_ -e |

. __
DN

-

X..
%
¢ 1 ;
=N
j x| ]
ccC

NCC al I r
L Z
p Y
( homomorphism and
stoichiomorphism (transitive))

1 }
=
1 7T
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Another
/00

111111111111

aaaaaaaaaaaa

77777

Xxa Xb xc xd

XX

va yb yc yd

- —
3 N\ xa0
o5 N\ xal
] N\ xa2 |
.6 xb
| xbl
0.4 N =b2
1 xc0
3] N\ xc1
-2 xc2
o)

111111111111
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Network Perturbations

Network

xa xb xc xd

XX

ya yb yc yd

A complex but robust
implementation of the
simple network

Normal Behavior

¢ 1 2 3 4 5 & 7 8 9 1

Removing each link in turn

2 N0
N NG
4 -

N sumOa0;xb0;xc0:xd0)

\ sum(xa0;xb0;xc0;xd0) N sum(xa0;xb0;xc0;xdo)

N sum(xa0;xb0;xc0;xd0)

N\ sum(vazivb2ive2ivd2) Nsom(yazivbaiye2ivd2)

JRARRA ARSI Rk LRSS s ) sk st S L LARE LAk taaaa rat

~_never dead

\ sum(xa0;xb0;xc0;xdo) 1 (x30;xb0;0;30)

\ sum(xa0;x60;xc0;xd0)

sumGcaLAbLxeLxa1)
N sum(eatiabcinds) NS
N sum(eazinbixc2int2) N sumGcazinb2ixezing2)
suma0, Sum(ya0iyb0rvco:vao)
Sumtyat sumyaziybLveLval)
242 N somiyazivo2 Nsumyaz, N sumiyaziybziveaiydz)
e
2e

A AL aaasd st st e e
o 1 2 3 4 s & 7 8 3
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Conclusion




Networks are Algorithms

- They are methods for achieving a function

- We need to understand how these methods relate to each other
- In addition to how and how well they implement function
- Algorithms can be obfuscated, and nature can obfuscate networks (to what end?)

- Network emulation can be checked statically

+ By stoichiometric/reaction-rate (structural) properties
- That is, no need to compare ODE (functional) properties
- For any initial conditions and rates of (one of) the networks

- We can efficiently discover emulations

- Automatic model reduction of large networks o7




Nature likes good algorithms

L

l
s i
P o d P o]

i

—

1

I
Approximate | Exact
[

‘default” rates and initial conditions ce any rates and initial conditions

These additional feedbacks do exist

in real cell cycles (via indirections)

The cell cycle switch can exactly emulate AM

/1 ’ .
r / ﬂx ¢ 1
LLL/ S T S i i
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What Contributes to Complexity?

- Indifference? (does not really cost much)
- Robustness? (resist point failures)

- Adaptability? (neutral paths)

- Noise resistance?  (improve signal processing)

- lemperature compensation?
- EtC.




