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Introduction



� No survival without computation!
� Finding food

� Avoiding predators

� How do cells compute?
� Clearly doing “information processing”

� What are their computational principles?

� What are their algorithms?

Cellular Computation
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Ultrasensitivity in the mitogen-activated protein cascadecascadecascadecascade, , , , Chi-Ying F. Huang 
and James E. Ferrell, Jr., 1996, Proc. Natl. Acad. Sci. USA, 93, 10078-10083.

Computer 
Science!



More concretely
� Give substance to the claim that 

“cells compute”
� Yes, but what do they compute?

� Catch nature red-handed in the act 
of running a computational task
� Something that a computer scientist 

would recognize as an algorithm
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H.Lodish & al. Molecular Cell Biology  4th ed.



Reality is Complicated
� Every biochemical species that we may just call “X” 

is actually a sophisticated machine that has evolved 
for billions of years
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Biochemical Networks



H.Lodish & al. Molecular Cell Biology  4th ed.
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Bioinformatics View (Data Structures)
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Biochemical 
Networks
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Network Evolution
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Across species: Ortholog genes Within species: Paralog genes

“same function”

“new function”



Influence Networks



How to model “Influence”
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“True” molecular interactions. “Equivalent” influence interactions.

Chemical Reaction Network Influence Network



The Reinitz Model of Influence
� Based on early connectionist (neural 

network) modeling
� Each activation/inhibition interaction is 

modeled as a flexible sigmoid function with 
4+ parameters per node

� We prefer to stick to mass action kinetics
� It will later become clear why

� We model activation/inhibition nodes
by a mass action motif:
� Using 4 rate parameters per node

� Akin to multisite modification
14



The Triplet Model of Influence
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=
inhibition

activation

inhibit x

activate x

high
(modified)

low
(unmodified)

x is high x is low

Usually modeled by 
sigmoid (e.g. Hill or 
Reinitz) functions

We model them by 
4 mass action reactions over 
3 species x0, x1, x2

They actually implement a 
Hill function of coefficient 2:

activation
inhibition
catalysis

r21 = 0.1

r10 = 10.0

r01 = 0.1

r12 = 10.0

triplet motif

biological mechanism:
(e.g.:) multisite 
phosphorylation

AM

=

Approximate Majority

For example:
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The Triplet Model of Influence
� Solving this mass action model at steady state

with ��� = �� + �� + ��, obtain �� as a function of 
 and � :
�

�� =
��������� 
�

������
� + ������
� + ��������

� Assuming � = ��� − 
 (inhibition decreases as activation increases)
obtain �� as a function of 
∈[0. . ���] (max stimulus = max response)

�� =
��������� 
�

(������ − ������ + ������)
� + (������ − 2������)��� 
 + ������ ���� 

� By regulating the rates of flow through �� within 2 orders of 
magnitude we can obtain a range of linear, hyperbolic and 
sigmoid responses in the range [0..1] to linear activation 
∈[0..1].
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steady state transitions 
from inhibited to activated
with ��� = 1 and 
∈[0..1]



Influence Network Notation
� Catalytic reaction

� Triplet motif
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x + z → z + y

z is the catalyst

influence node catalytic node

(~x)0= x2,    
(~x)1= x1,    
(~x)2= x0

Duality



Influence Network Duality
� Let ~x be the species such that 

(~x)0= x2,    (~x)1= x1,    (~x)2= x0

so that promoting x is the same as inhibiting ~x etc. Then:
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Network model
� Influence networks

� Influence species: two main molecular states (high/low or modified/unmodified)

� High-low transitions are nonlinear (e.g. sigmoidal)

� Transition kinetics may vary (but we fix one uniformly)

� Very much like gene regulatory networks, but with the extra option of
the “unmodified” state being active too

19

inhibition

activation

high
(modified)

low
(unmodified)

Nodes Ex.: a cell cycle switch model

G2/M Transition



Consensus Networks



� Population Consensus
� Given two populations of x and y “agents”

� We want them to “reach consensus”

� By converting all agents to x or to y
depending on which population was in majority initially

� Population Protocols Model
� Finite-state identity-free agents (molecules) interact in 

randomly chosen pairs (⇒ stochastic symmetry breaking)

� Each interaction (collision) can result in state changes

� Complete connectivity, no centralized control (well-mixed solution)

A Consensus Problem

21

specification

X,Y := X+Y, 0   if  X0 ≥ Y0

X,Y := 0, X+Y if  Y0 ≥ X0



� Approximate Majority (AM) Algorithm
� Uses a third “undecided” population b

� Disagreements cause agents to become undecided

� Undecided agents agree with any non-undecided agent

A Consensus Algorithm

22

x yb

x + y →
r y + b

y + x →
r x + b

b + x →
r x + x

b + y →
r y + y

catalysis

chemical
reaction
network

x=y=5000
b=0

x=5500
y=4500
b=0

activation
inhibition

AM



Consensus Algorithms
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Direct Competition Approximate Majority

DC AM

Worse-case scenario example, 
starting with x0=x2, x1=0:

x0=x2

x=y

Bad: O(n) Good: O(log n)

x2 + x0 → x0 + x1

x1 + x0 → x0 + x0

x0 + x2 → x2 + x1

x1 + x2 → x2 + x2

x + y → y + y
y + x → x + x



A Biological Implementation
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Approximate Majority (AM) Epigenetic Switch

x yb

1) Bistable
Even when initially x=y (stochastically)

2) Fast (asymptotically optimal)
O(log n) convergence time

3) Robust to perturbation
above a threshold, initial majority wins whp

2007 2007



Not always that simple
� The epigenetic switch seems a direct biological 

implementation of an algorithm
� Although we may have to qualify that with some notion of 

approximation of the (enzymatic) kinetics

� In most cases the biological implementation seems 
more indirect or obfuscated
� “Nature is subtle but not malicious - Einstein” Ha! think again!

� Other implementations of Approximate Majority seem more 
convoluted and approximate

25



Antagonistic Networks



Antagonistic Networks
� Let’s generalize:

� AM is based on antagonism between two species (inside the triplet)

� So (essentially) are many standard biological networks

� Are they somehow related?
� We could try the same empirical analysis as for CC/AM

� But we can do better

27



Mutual Inhibition (1 vs. 1)
� “All” cellular switches in all phases of the cell cycle follow (abstractly) a 

mutual inhibition pattern:

� Also found in other areas
(cell polarity establishment):

28

MI

cf.:

GW



Septation Initiation (1 vs. 1)
� Other (inherently different) biological networks are based on mutual inhibition, 

and share characteristics with AM

29

SIN inhibiting Byr4,
absence of SIN promoting Byr4
Byr4 inhibiting SIN,
absence of Byr4 promoting SIN



Delta-Notch (2 vs. 2)
� A mutual inhibition pattern

� Involving two species in each cell

� In two cells a,b
� Da,Nb antagonize Db,Na

30



Antagonistic Networks

31

1 vs. 1 
Mutual Inhibition &
Self Activation

1 vs. 1 
Mutual Inhibition &
Mutual Anti-activation

Cell cycle transitions

Polarity establishment

Gene networks

Septation Initiation

MI SI

activation
inhibition



Antagonistic Networks
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3 vs. 3

The “new” cell cycle switch

NCC

2 vs. 2

activation
inhibition

Delta-Notch

x

r

z

t

s

The G2/M cell cycle switch

CCr

1 vs. 2



The Cell Cycle Switch



Decisions, decisions…
� The AM algorithm has ideal properties for settling a 

population into one of two states

� Seems like this would be useful in Biology
� Can we find biological implementations of this algorithm?

� Could it be related to the cell cycle switch?

34



� This basic network is universal in Eukaryotes [P. Nurse]
� The switching function and the basic network is the same from yeast to us.

� In particular detail, in frog eggs, G2/M transition:

� The function is very well-studied. But why this network structure?

� That is, why this peculiar algorithm?

xy

The Cell Cycle Switch

35

Double positive feedback on x
Double negative feedback on x
No feedback on y.    Why ???

Hybrid Hybrid Hybrid Hybrid 
System!System!System!System!



How to Build a Good Switch
� What is a “good” switch?

� We need first a bistable system: one that has two distinct and stable states. 
I.e., given any initial state the system must settle into one of two states

� The settling must be fast (not get stuck in the middle for too long)
and robust (must not spontaneously switch back)

� Finally, we need to be able to flip the switch by external inputs

� “Population protocol” switches
� Identical agents (‘molecules’) in a population start in some state, say x or y

� A pair of agents is chosen randomly at each step, 
they interact (‘collide’) and change state

� The whole population must eventually agree on a 
majority value (all-x or all-y) with probability 1

36



A Bad Algorithm
� Direct Competition

� x catalyzes the transformation of y into x

� y catalyzes the transformation of x into y

� when all-x or all-y, it stops

� This system has two end states, but
� Convergence to an end state is slow (a random walk)

� Any perturbation of an end state can start a random 
walk to the other end state (hence not really bistable)

37

y + x → x + x
x + y → y + y

x y

catalysis



A Good Algorithm
� Approximate Majority (AM)

� Third, undecided, state b

� Disagreements cause agents to become undecided

� Undecided agents believe any non-undecided agent

� With high probability, for n agents
� The total number of interactions before converging is O(n log n)

⇒ fast (optimal)

� The final outcome is correct if the initial disparity is ω(sqrt(n) log n)

⇒ solution states are robust to perturbations

� Logarithmic time bound in parallel time
� Parallel time is the number of steps divided by the number of agents

� In parallel time the algorithm converges with high probability in O(log n)

38

x yb

x + y → y + b
y + x → x + b
b + x → x + x
b + y → y + y

x=y

Worst-case scenario, 
starting with x=y, b=0:

catalysisactivation
inhibition

AM

=



An “Ugly” Algorithm: Cell Cycle Switch

� Is it a good algorithm? Is it bad?

� Is it optimal or suboptimal?

39

Nobel-prize 
winning network

Obfuscation of a 
distributed 
algorithm?

xy

activation
inhibition



Convergence Analysis   - CONSENSUS
� Switches as computational systems

40

DC AM SC CC

1.0

0.00355

0

0

2.0

0.00710

0

0

2.0

15

0
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0
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↑
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← ts →

Start symmetrical
(x0=x1=x2 etc.)

Black lines: several stochastic simulation traces
Color: full probability distribution of small-size system

CC converges in O(log n) time (like AM)
(but 2x slower than AM, and does not fully switch)



Steady State Analysis   - SWITCH
� Switches as dynamical systems

41

↑

xp
↓

← sxp → 150
0

15

Pr(xp|sxp)

150

150
0

0

↑

xs
↓

← sxs →

DC AM SC CC

Black lines: deterministic ODE bifurcation diagrams
Red lines: noisy stochastic simulations
Color: full probability distribution of small-size system



A Bug in the Algorithm



In Summary

43

DC AM CC

1.0

0.00355

0

0

2.0

15

0

0.00710

← tp →0

0

↑

xp
↓

Pr(xp|tp)

1.00

15000

0

1.00

↑
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↓

← ts →

CC converges in O(log n) time (like AM)
(but 2x slower than AM, and does not fully switch)

Symmetrical initial conditions (x0=x1=x2)

Black lines: high-count stochastic simulation traces
Color: full probability distribution of low-count system

Hor axis is time.

↑
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↓

← sxp → 150
0
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Pr(xp|sxp)

150

150
0

0

↑

xs
↓

← sxs →

Black lines: deterministic ODE bifurcation diagrams
Red lines: medium-count stochastic simulations
Color: full probability distribution of low-count system

Hor axis is stimulus pushing towards x0 against fixed bias.

Stabilization
Speed

Steady State
Stimulus-
Response

AM shows hysteresis (like CC)
time

stimulus

The “classical” Cell Cycle Switch CCCCCCCC
approximates AM performance

(a “bad” switch)

But there is a deficiency
in CC performance!

activation
inhibition
catalysis



Why is CC worse than AM?
� The classical CC has an algorithmic “bug”

� It works ok but never as well as AM

� Because s continuously inhibits x through z, so that x cannot fully express 

� So let’s fix the bug!
� Easy: let x inhibit s and t “in retaliation”

� Q: Why didn’t nature fix it?

44

2.0

15

0

0.00710

← tp →0

0

↑

xp
↓

Pr(xp|tp)

CC
0.020 ← t →

ri/re = 0.675

0

30000
↑

n

↓

The corresponding cell cycle 
oscillator is also depressed



Nature fixed it!
� There is another known feedback loop

� By which x suppresses s “in retaliation” via the so-called Greatwall loop

� Also, s and t happen to be the same molecule (=s)

� s and x now are antagonists: they are the two halves of the switch, 
mutually inhibiting each other (through intermediaries).

45

1.0

9

0

0.0025

← tp →0

0

↑

xp
↓

Pr(xp|tp)

15000

0

↑

xs
↓

← ts →

Full activation!
GW

(Gwl)

cdc25

cdk/cyc

wee1
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Biological network



More surprisingly
� The fix makes it faster too!

� The extra feedback also speeds up the decision time of the switch, 
making it about as good as the ‘optimal’ AM switch:
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0.004← ts →0

15000

0

↑

xs
↓

AM
GW
CC

Conclusion:
Nature is trying as hard as it can to 
implement an AM-class algorithm!

The “classical” cell cycle switch is only 
half of the picture: the extra feedback 
completes it  algorithmically.



The Greatwall Loop
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GW

Sep 2012 Sep 2012

� Our paper appeared, suggesting GW is 
a better cell cycle switch than CC:

� Another paper appeared that 
same week:

new feedback

switch reset

GW = AM “obfuscated” Showing experimentally 
that the Greatwall loop is a 
necessary component of 
the switch.
The not-as-good-as-AM 
network has been ‘refuted’



More Recent Developments



The basic “revised” Cell Cycle Switch
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CCr

(Gwl)

cdc25

cdk/cyc

wee1

PP2A

This is an AM-class algorithm
(identical performance)

CC

Vs.



New Cell Cycle Switch Network 
� A recent paper presents a more complete view of the cell cycle switch

� N.B. “phosphorylation network dynamics” here is the same as our x0-x1-x2 motif

50

NCC

Cdk1PP2A

GWL

PP1 Wee1

Cdc25

Mutual inhibition between 
three species each



Molecular Implementation of AM
� We produced a chemical implementation of AM using DNA gates

� I.e., a ‘synthetic reimplementation’ of the central cell-cycle switch.  

51



Network Equivalences



What we learned
� The network structure of AM implements an input-driven switching function 

(in addition to the known majority function).

� The network structure of CC/GW implements a input-less majority function 
(in addition to the known switching function).

� The behavior of AM and CC/GW in isolation are related.

� The behavior of AM and CC/GW in oscillator contexts are related.

� A refinement (GW) of the core CC network, known to occur in nature, 
improves its switching performance and brings it in line with AM performance.
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Can we make this precise?

� Our evidence for computational content of biochemical networks is 
so far
� Quantitative, covering both kinetic and steady state behavior of what networks do

� But empirical (based on simulations/numerical solutions)

� And it does not yet explain how the CC/GW network relates to the AM network,
that is, how each piece of CC/GW corresponds to each piece of AM

� Analytical evidence is harder to obtain
� The proofs of the computational properties (optimality etc.) for the AM algorithm are hard and do not 

generalize easily to more complex networks

� Quantitative theories of behavioral equivalence and behavioral approximation, e.g. in process algebra, are 
still lacking (although rich qualitative theories exist)

� How exactly is CC (or CCr, GW, etc.) the “same” as AM?

54



Network Emulation CCr emulates AM
� For any rates and initial conditions of AMAMAMAM, we can find some rates and initial 

conditions of CCrCCrCCrCCr such that the (9) trajectories of CCrCCrCCrCCr retrace those (3) of AMAMAMAM:

� How do we find these matching parameters? By a network morphism! 55

(9 species on 3 trajectories) (3 species on 3 trajectories)

~s,r⇢ x

AM

initialize: 
z = x

~y = x

(y2 = x0

y1 = x1

y0 = x0)

(3 species)CCr



Network Emulation: MI emulates AM
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MI

initial conditions:

z0 = y2 = x0

z1 = y1 = x1 

z2 = y0 = x2

AM

homomorphic mapping

any initial conditions

less trivial than you might think:

it need not preserve the out-degree of a node!

A mapping of species and reactions

z -> x
~y -> x



Network Emulation: SI emulates AM
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SI

initial conditions:

z0 = y2 = x0

z1 = y1 = x1 

z2 = y0 = x2

AM

homomorphic mapping

any initial conditions

A mapping of species and reactions

z -> x
~y -> x



How to find emulations
� How do we check a potential mapping for all possible 

initial conditions of the target?
� Statically! Check conditions on the joint stoichiometric matrices of the two 

networks under the mapping.

� How do we check a potential emulation morphism for all 
possible rates of the target? 
� Can’t; but if one emulation is found, then the rates of the target network 

can be changed arbitrarily and a related emulation will again exist.
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Applications of Emulation
� Model Reduction

� Find reduced networks

� Compute quotient CRNs

� Find network symmetries 
that may be of biological interest

� Morphism Generation
� Find morphisms between networks

(e.g. all the ones for a fixed rate assignment)

59

Aggregation 
reduction

Emulation 
reduction

Models from the BioNetGen database

Concur 2015 POPL 2016 LICS 2016



Network Evolution and 
Network Robustness



Walks in Network Space
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,s ⇢ x

NCC

GW

z,~y ⇢ z
s,~r ⇢ y

DN

(          homomorphism and 
stoichiomorphism (transitive))

r ⇢ x

~s ⇢ x

AMs

AMr



Walks in Network Space
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,s ⇢ x

NCC

GW

z,~y ⇢ z
s,~r ⇢ y

DN

(          homomorphism and 
stoichiomorphism (transitive))

r ⇢ x

~s ⇢ x

AMs

AMr



Walks in Network Space
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,s ⇢ x

NCC

GW

z,~y ⇢ z
s,~r ⇢ y

DN

(          homomorphism and 
stoichiomorphism (transitive))

r ⇢ x

~s ⇢ x

AMs

AMr

Neutral paths 
in network space

Side
jumps



Another 
Zoo
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Network Perturbations

65

Network               Normal Behavior         Removing each link in turn

A complex but robust 
implementation of the
simple network

dead

never dead “on average”



Conclusion



Networks are Algorithms
� They are methods for achieving a function

� We need to understand how these methods relate to each other

� In addition to how and how well they implement function

� Algorithms can be obfuscated, and nature can obfuscate networks (to what end?)

� Network emulation can be checked statically
� By stoichiometric/reaction-rate (structural) properties

� That is, no need to compare ODE (functional) properties

� For any initial conditions and rates of (one of) the networks

� We can efficiently discover emulations 
� Automatic model reduction of large networks 67



Nature likes good algorithms

68

CCr

CC
Approximate

“default” rates and initial conditions

Exact
any rates and initial conditions

These additional feedbacks do exist 
in real cell cycles (via indirections)

The cell cycle switch can exactly emulate AM

NCC MI
AM



What Contributes to Complexity?
� Indifference? (does not really cost much)

� Robustness? (resist point failures)

� Adaptability? (neutral paths)

� Noise resistance? (improve signal processing)

� Temperature compensation?

� Etc.
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